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Abstract 

The traceability of some of the smaUer polyhexes is examined. (A graph is said to be 
traceable or to have a Hamiltonian path if it has a path visiting every vertex just once.) Most 
polyhexes are traceable, and an attempt is made to develop some practical guidelines for 
finding those that are not. A subgraph consisting of the branching vertices of a polyhex, and 
of any edges which join pa'trs of such vertices, is a useful tool for this purpose. The 
"principal resonance structures" of such a graph suggest ways of ffmding simpler spanrmg 
subgraphs of the polyhex that will often make its traceability, or lack of it, more obvious. 

1 ~ Introduction 

A graph is said to be traceable or semi-Hamiltonian, or to have a Hamiltonian 
path, if one can trace a path along a connected sequence of vertices and visit every 
vertex just once. The problem of I-mding or enumerating such paths is closely related 
to that of finding or enumerating Hamiltonian circuits - closed walks connecting all the 
vertices of a graph. The name derives from William Rowan Hamilton, who was 
Astronomer Royal for Ireland for a period during the nineteenth century, and who 
formulated this problem as a garne in which the object was to find these circuits on the 
dodecahedron graph [ 1 ]. 

On small graphs which are not too complicated, it is easy to see Hamiltonian 
circuits, and one might think that it would not be difficult to specify a non-empirical 
means of distinguishing graphs which have them from those that do not. However, 
despite a good deal of  work (see, e.g. [1-19]) and the fact that the superficially similar 
problem of characterising graphs which are Eulerian (i.e. have a path which includes 
every edge just once) is more amenable, this has not been done. For many classes of 
graph, it is possible to define conditions for a graph to be Hamiltonian or path 
Hamiltonian, but necessary and sufficient conditions for an arbitrary graph have not 
been defined, and some think it unlikely that this will ever be achieved [20]. 

There a r ea  number of reasons why one might wish to know which graphs are 
traceable. An example is the encryption of unweighted graphs for computer storage and 
manipulation; a convenient practical technique for entering the description at a key- 
board is to enter the number of vertices, followed by connections which, when made or 
broken, convert a consecutively numbered linear chain of the same size to the structure 
in question [21]. Simple examples are benzene: 6 1-6;  octane: 8; and 3,4-dimethyl- 
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hexane: 8 3 - 7  4 -5 .  Ideally, but not necessarily, this corresponds to finding the mini- 
mum number of  disjoint paths required to span the graph. Apart from the linear chains 
themselves, all trees must have at least one bond in the preliminary chain broken in 
order to arrive at the required structure. On the other hand, it was found in practice that 
many cyclic structures can be described in terms of new connecüons only, i.e. without 
any need to break the chain into smaller fragments. A minority do need a disconnection 
however, and it was curiosity about the proportions and distribution of such cyclic 
graphs that led to this study. 

An additional reason is that traceability must be among the factors that determine 
what kinds of  structure it is possible or impossible to form by intra-molecular cross- 
linking of  a linear polymer. 

The methods available for calculation of ~r-electron ring currents in conjugated 
systems depend upon whether or not they are traceable [22-25],  and clearly 
Hamiltonian circuits am of some interest in the context of so-called "conjugated-circuit" 
theory [26-28], for they represent the largest of  such possible circuits in a fully 
conjugated system. 

Outside chemistry, the weH-known "travelling salesman" problem - that of  
devising the most efficient route with which to visit a number of cities with no repetition 
and at minimum cost - first requires a search for graph traceability, and in many other 
fields there occur problems for which the properties of a network, including whether or 
not it is traceable, am important. Within graph theory itself, the enumeration of the 
spanning trees of a graph [8,29-32] is relevant; here, one seeks those graphs whose set 
of  spanning trees includes a linear chain. 

At the informal level of  common sense, Hamiltonian paths are very like 
Hamiltonian circuits, but with obvious differences. More graphs are traceable than 
have Hamiltonian circuits, because for every Hamiltonian circuit there necessarily exist 
Hamiltonian paths, but the converse is not tme. 

The traceability of a graph depends upon the number, disposition and valency of 
vertices that am other than 2-valent. This paper approaches the matter from a practical 
point of  view, and tries to devise some fairly simple rules and algorithms to aid 
recognition of traceable or non-traceable polyhexes. 

2. Some general graphs whose traceability is easily seen 

The nomenclature used in this paper generally follows that ouflined by Wilson 
(see appendix). In the following illustrations, a line with curvature indicates a path 
through at least one 2-valent vertex, while a straight line denotes a single edge. 

Structures (1)-.(18) illustrate some of the graphs with disjoint branching vertäces 
whose traceability is obvious. In these, it can be seen that if there am b branching 
vertices, and these are excised, then the number of components left reflects the trace- 
ability of the original graph (b + 1 = traceable; b + 2 = untraceable). For this discussion 
of polyhexes, particular interest attaches to (6) and (18). 
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TRACEABLE UNTRACEABLE 

1 2 

3 4 5 

6 7 8 9 10 

11 12 13 14 

15 16 17 18 

3. Polyhexes 

3.1. INTRODUCITON 

A polyhex is a network of  regular hexagons such that any two hexagons are either 
disjoint or have a common edge. These are sometimes referred to as hexagonal ammals 
or hexagonal polyominoes in mathematical literature, and the names benzenoid, arene 
or polyarene are used for 1-factorable polyhexes (e.g. [33,34]), although usage is not 
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always consistent. Here, the term honeycomb-fragrnent is used for a structure that can 
be obtained by copying part of a hexagon grid; it may or may not have hexagons or 
terminal vertices (cf. [351). 

These polyhexes form a perennially interesting and a relatively uncomplicated 
class of chemical graph, and it is of interest to examine the distribution of traceable 
graphs within it, even though this is not especially useful for coding purposes (for there 
are faster ways of encoding this class of graph [21,34]). Each vertex has a valency of 
two or three. 

Structure (6) is traceable, so if it can be recognised as a spanning subgraph of a 
polyhex, then that polyhex too must be traceable. A spanning subgraph with only 2- 
valent vertices is a 2-factor (a Hamiltonian circuit is one kind of 2-factor). The result 
of 2-factoring is to erase edges in such a way as to eliminate branching without 
introducing any terminal vertices. It is therefore appropriate to extend the concept of 2- 
factoring to an analogous process in which any spanning subgraph with a minimum 
number of disjoint branching vertices, but no terminal vertices, is accepted as a valid 
factor. If the result is a graph of type (6), then it is traceable, whereas if it resembles (18), 
it is untraceable. 

3.2. DEFINITION AND SOME PROPERTIES OF THE BRANCHING GRAPH 

For this study, it is useful to define a special subgraph of a polyhex caUed a 
"branching graph". Each vertex of the polyhex (G) appears in the branching graph (B) 
if and only if it has a valency greater than two. Each edge of G appears in B if and only 
if it joins two branching vertices in G. The strucmres (19) and (20) show an example 
of a polyhex/branching-graph pair. This subgraph should not be confused with other 
derived graphs such as the dualist, originating from Balaban and Harary's work [36-38]. 

@ )-( 
20 19 

Any polyhex has only one branching graph but, as examples (21)-(23) show, 
more than one distinct polyhex may share the same branching graph. For the purpose 

21 22 23 
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of investigating traceability this does not matter, and indeed is irrelevant, but for the 
reconstruction of a polyhex from a branching graph, it is necessary to consider the 
possible configurations that the lauer can assume when superimposed upon a hexagon 
grid [36]. Even then, it is occasionally possible to draw two distinct polyhexes around 
a specific honeycomb fragment, e.g. (24) and (25). 

24 25 

It is interesting to note that Gutman has stated [33] that the theory of benzenoid 
systems suffers a fundamental problem, in that their definition is of a geometric rather 
than a topological nature. 

It is conjectured here that it is only possible to draw two polyhexes around a given 
honeycomb fragment when it has no terminal vertices, and that this is a necessary but 
not a sufficient condition. 

Not every honeycomb fragment represents the branching graph of some polyhex. 
A given graph with a maximum valency of three has one or more possible repre- 
sentations as a honeycomb fragment, and all, some or none of these may be valid 
branching graphs. 

A branching graph may be disconnected (in the linear polyacenes, for example). 
However, a graph that is valid as a branching graph is not necessarily valid as a 
disconnected branching graph component. For example, (26) is a valid branching graph 
but, unlike (27), it cannot appear as an isolated component. This is because in (28), the 
polyhex of (26), there are no peripheral edges that are more than one edge distant from 
a branching vertex, so that any kind of condensation always extends (26). 

26 27 28 

The branching graphs of polyhexes with few intemal vertices are usually acyclic. 
Larger polyhexes with more internal vertices will have smaller polyhexes, usually with 
acyclic attachments, as their branching graphs. 

The number of vertices in the branching graph is even and, since they are mapped 
from the 3-valent vertices of the polyhex, the total is known to be 2(h - 1), where h is 
the number of hexagons [33]. 



36 E.C. Kirby, Hamiltonian paths in polyhexes 

3.3. THE USE OF BRANCHING GRAPHS 

A polyhex G can be 2-factored to a cycle graph if edges that connect two 
branching vertices can be chosen and deleted until no branching vertices remain. This 
means deleting as many disjoint edges of G as possible from those that appear in the 
branching graph B. This problem of selecting maximal sets of disjoint edges is 
equivalent to the problem of 1-factoring or of finding non-equivalent Kekulé structures 
or edge colourings [39-49]. A Kekulé structure of B will, by its double bonds, show a 
set of edges in G whose erasure will eliminate all branching vertices without introducing 
terminal vertices. If B does not have Kekulé structures, then edge erasure corresponding 
to the principal resonance structures will reveal ways in which the number of branching 
vertices in G can be minimised, while avoiding leaf formation. 

3.4. THE CLASSIFICATION OF POLYHEXES 

When polyhex branching graphs and the corresponding polyhex factors are 
examined, the parent polyhexes fall into a number of categories which are described 
here. In each example shown, the double bonds of the embedded branching graph 
together represent one possible principal resonance structure. Such an example has no 
significance in the conventional sense of conjugaüon theory, but indicates that the 
polyhex is factorable, in the general sense described, by erasure of the set of double 
bonds shown. 

It can be seen by inspection and introspection that if the branching graph 
B is 1-factorable, then the parent graph G is 2-factorable. If each 1-factor of the 
branching graph is taken in turn, and its edges are erased from a fresh copy of the 
parent graph, then this procedure will yield all the 2-factors of G. If at least one of these 
2-factors is a connected graph, then G is traceable and also has a Hamiltonian circuit, 
e.g. (29a and b). 

29. 29b 

If, on the other hand, B is 1-factorable, but G is 2-factorable only to a dis- 
connected graph (i.e. all 2-factors have more than one component), then there is no 
Hamiltonian circuit, although usually G is traceable (e.g. 30a, b and c), depending upon 
the connectedness of the branching graph (see below). 
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C~ 
30a 30~ 30c 

It is conjectured that if the minimum number of components of  the 2-factor is 
two, then the polyhex is always traceable (but has no Hamiltonian circuits). The reason 
for this is that one disconnection of the factored graph (to two components) must arise 
from edge erasure in accordance with the double bonds of a Kekulé structure of a single 
branching graph component (whether or not there are other components present). Such 
a Kekul6 structure can always be converted to a diradical with one less double bond. The 
corresponding polyhex factor will have two branching vertices, and the conjecture is 
that there will always be a factor of  this type that is connected and therefore traceable. 

If the 2-factor taust have more than two components, then it may be the case that 
more than one component of  the branching graph causes disconnection in the 2-factor. 
If this is so, then a modified principal resonance structure that avoids disconnection of 
the  polyhex 2-factor must be more than 2-valent, and it is clear that the polyhex must 
be untraceable, e.g. (3la and b). 

o~ 
31, 31~ 

IL however, the multiplicity of 2-factor components arises from a single 
branching graph component then, it is conjectured, a doubly branched but cormected 
factor can be found, and the polyhex is traceable with no Hamiltonian circuits, e.g. (32a, 
b and c). This is perhaps the most tentative conclusion in this scheme, and it may prove 
to be invalid for more complicated systems, but a counter-example has not yet been 
found. 

~~ss 
32m 32b 32c 
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If the branching graph is not 1-factorable but can have a diradical structure, then 
a factor can be found with just two branching vertices, and by comparison with (6) it 
can be seen that if this is connected, the polyhex is traceable, e.g. (28a, b and c). 

6~63 ~ 
28, 28;~ 28c 

If, on the other hand, it and all possible factors are disconnected, then it is 
conjectured that the polyhex is untraceable, e.g. (33a and b). 

33a 
33b 

This may be seen by examining (34) as an example; on a graph with two disjoint 
branching vertices and no leaves, a Hamiltonian path must begin or end on a vertex 
adjacent to one branching vertex and end or begin on a vertex 0abelled 1) that is 
adjacent to the other branching vertex, 2. To extend the path through another ring, a 
connection from vertex 3 on the other ring taust be to vertex 1. However, if this is so 
then, in the original graph, 1 -2  and 1-3 are two adjacent edges with a vertex in 
common. Since in a factoring every possible disjoint erasure of such edges is valid, 1 -2  
rather than 1-3  could be erased, giving (35), which is connected. Therefore, if all 
possible erasures give disconnection (of are not maximal), then the branching vertex 
connecting the cycle taust be at some other vertex, 4, more than one edge distant from 
2, as shown in (36), and such a graph is immediate]y seen to be untraceable. 

34 35 36 
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If the branching graph cannot have a principal resonance structure that is less than 
quadrivalent, then its parent graph cannot be reduced to a graph with less than four 
disjoint branching vertices (cf. 18), and is not traceable, e.g. (37a and b). 

37a 37b 

It follows from these remarks, and it can be seen by ins~ction,  that every 
catacondensed polyhex (one with no internal vertex) has both Hamiltonian paths and a 
Hamiltonian circuit. Catacondensation of a catacondensed polyhex (P) upon the 
eclge vy-v.  of another graph (G) merely extends the path section ~ - v  to inclucle 

x y 

the pefi*phe'ry of P, and does not change the traceability of G. So every polyhex with just 
one internal vertex, which is a catacondensation product of the 3-ring system (28), is 
traceable, but has no Hamiltonian circuit. 

3.5. THE INCIDENCE OF TRACEABILITY AMONG POLYHEXES 

In addiüon to some trial and error work, a list of known polyhexes [34] with up 
to eight hexagons was used for some preliminary testing of the method. They wem 
examined with the aid of a simple computer program and by visual inspection. The 
results are summarised in table 1. 

Referring to the 81 six-hexagon systems [34] in more detail, the 36 cata- 
condensed members (not shown) together with orte other (38) form a group whose 
branching graphs all have Kekulé structures that do not lead to disconnecüon of the 
parent polyhex, and so all are (path- and circuit-) Hamiltonian. 

Seven members (25 and 39-44) also have branching graphs with Kekulé struc- 
tures, but in this case application to bond erasure always causes disconnection of the 
parent graph. The polyhexes therefore have multi-component 2-factors, but in every 
case they arise from orte branching graph component, and they are path-Hamiltonian hut 
not circuit-Hamiltonian. 

There are 24 polyhexes (not shown) with one internal vertex. These have no 
Hamiltonian circuits, hut are traceable. Another group of eleven (45-55) are more 
complicated, hut they too have branching graphs whose principal resonance structures 
are diradicals that do not involve disconnection, and are therefore traceable. 

Finally, there are two polyhexes (37 and 56) that, because their branching graphs 
have quadrivalent principal resonance structures, are untraceable. Examples of untrace- 
ability arising from disconnection, such as (31) and (34) mentioned in section 3.4, are 
encountered only in larger systems. 
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Table 1 

Analysis of polyhexes with up to eight hexagons 

Number of  hexagons: 2 3 4 
Number of  intemal 

vertices: 0 0 1 0 1 2 

Number of  structures: 1 2 1 5 1 1 

v = 0:* 1 2 5 
v = 2 (a): 1 1 1 
v = 2 Co): 
0 = 4 :  

Total untraceable: 0 0 0 
Total polyhexes: 1 3 7 

Number of  hexagons: 7 
Number of intemal 

vertices: 0 1 2 3 4 5 

Number of  structures: 118 106 68 25 10 3 

v = 0: 118 39 4 
v ' - 2 ( a ) :  106 21 24 5 3 
V = 2 (b): 
v = 4 :  8 1 1 

Total untraceable: 10 
Total polyhexes: 331 

5 6 

0 1 2 3 0 1 2 3 4 

12 6 3 1 36 24 14 4 3 

12 2 36 7 1 
6 1 1 24 6 4 1 

1 1 

0 2 

22 81 

8 

6 0 1 2 3 4 $ 6 7 

1 411 453 329 144 67 21 9 1 

411 175 25 5 
1 453 99 127 32 20 3 1 

1 6 10 1 
54 11 1 

85 
1435 

* v = 0: Each branching graph has a Kekulé structure; polyhexes with no internal vertices (catacondensed) 
were counted from the published list [34] without further examination. Every parent polyhex is traceable. 

v = 2 (a): The branching graph has a divalent principal resonance structure, and application of  this to the 
polyhex (see text) gare a connected graph with two disjoint branching vertices. Those polyhexes with orte 
internal vertex were counted from the published list [34]. All are traceable. 

v = 2 (b): The polyhex has the same kind of branching graph as above, but one that yielded a discormected 
graph, so that this class is untraceable. 

v = 4: The branching graph has a quadrivalent principal resonance structure, and the parent polyhexes are 
untraceable. 

37 56 

Hence, it can be seen that the vast majofity of polyhexes are traceable, including 
all those with five or fewer hexagons. This finding is in accordance with Mallion's 
observation, based on trial and error work [9], that conjugated systems that are not semi- 
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Hamiltonian seem to be rather uncommon. Within the range tested, the proportion of 
untraceable polyhexes increases with the number of hexagons (see table 1), and rises 
from 2.5% (six hexagons) to 5.9% of total numbers for eight hexagons, but it remains 
much smaller than the proportion lacking Kekul6 stmctures, 2-factors or Hamiltonian 
2-factors [50]. Few other statistics are available, but one study [51,52] showed that what 
might be called "near-Hamiltonian" paths and circuits on large polyhexes increase 
exponentially in number with size. 

3.6. THE CONSTUCTION OF UNTRACEABLE POLYHEXES 

If one has the full set of polyhexes available, then each can be examined and those 
few that are untraceable picked out. However, how does one enumerate or count them 
direcüy? In general, this is done by constructing every possible branching graph whose 
minimally-valent principal resonance structures (the minimum valency that avoids 
disconnection of the polyhex when applied as described) is more than 2-valent. 

A recursive construction process is easy in principle although very tedious in 
practice; each known untraceable polyhex is extended by one ring while preserving the 
branching graph type. It is easily seen how six (57-62) of the ten untraceable 7-ring 
polyhexes (57-66) can be derived in this way from the two 6-ring untraceable 
polyhexes (37) and (56). This is equivalent to expanding the branching graph by two 
edges. A second stage is to expand the branching graph in as many ways as possible by 
splitting it along one edge, duplicating that edge, and then setting the fragments into as 
many valid singly bridged or disconnected configuraüons as possible. This amounts to 
the inserüon of polyhex systems between smaller polyhexes that are traceable but have 
no Hamiltonian circuit. For the 7-ring polyhexes, this gives (63-66). 

Thus, the generation of a large selection of untraceable polyhexes is straight- 
forward, but full counting or enumeration soon becomes unwieldy because of the 
variety of possible structures that must be considered. It is therefore not recommended 
for this lauer purpose, it being safer to rely upon the testing of previously enumerated 
polyhexes insofar as they are available. 

4. Concluding remarks  

In this paper, the detection of, and to a lesser extent the enumeration of, 
Hamiltonian patt~ and circuits in polyhexes has been considered. No attempt was made 
to "solve" the general Hamiltonian problem in the formal sense of finding necessary and 
sumcient conditions [20]. Rather, the standpoint taken was that of the chemist armed 
with pencil and paper (and possibly a small computer), faced with an arbitrary polyhex 
structure; how is one to set about establishing whether the structure is traceable and, if 
it is, what paths there are? In fact, because most polyhexes are traceable, the first 
question is better posed in the negative: how does one establish that a given graph is 
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57 58 

59 60 

61 62 

63 64 

65 66 

untraceable? Verification of such a negative by inspection can be surprisingly laborious 
and error-prone, even for systems of moderate size. 

With this in mind, a special subgraph has been introduced and used in conjunc- 
tion with its principal resonance structure(s) as an exploratory device. Its properties 

- some obvious and easily demonstrated, and some conjectured - enable one (orten 
immediately, sometimes after further tests) to establish traceability. The device can also 
be used as a guide for Hamiltonian path enumeration when the structure is traceable, 
because different resonance structures of this special subgraph reveal different paths. 

Whether, overall, this scheme does save labour in answering such questions when 
compared with trial and error methods or computer searches, is to some extent a matter 
of  judgement and experience. 
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Appendix 

Glossary o f  graph theory terms used 

See also refs. [53,54]. 

Chain: a structure consisting of a connected sequence of  unbranched vertices. 

Circuit: a (closed) walk visiting the sequence of N vertices v o, v I . . . . .  v/v 
which are all distinct except that v 0 coincides with v N. 

1-factor: an independent set of  edges which includes every vertex; a spanning 
subgraph where all vertices are 1-valent (equivalent to the set of  "double" 
bonds of a Kekulé structure). 

2-factor: a spanning subgraph where all the vertices are 2-valent; it consists of  
a ring or rings. 

Hamiltonian 
circuit or path: a circuit or path including all the vertices of the graph; in the case of 

a circuit, it is a spanning 2-factor. 

Leaf: a terminal vertex, of valency 1. 

Path: a walk traversing distinct edges and verüces. 

Walk: a sequence of edges connecting vei~ices Vor ~ , v l v  z, t~2v 3 . . . . .  

Practical methods 

The method described is quite straightforward to apply by hand, but some 
computer assistance can be useful. A polyhex can easily be coded for computer 
manipulation. A convenient method is to superimpose it (in an arbitrary orientation) 
upon a triangular hexagon grid, read oft  coordinates for each hexagon, and allow a 
program to use this information to number the vertices and construct a connection table. 
A simple extension of this pmgram then creates a connection table for the branching 
graph of the given polyhex. 

A semi-random search method for finding principal resonance structures from an 
adjacency matrix was developed earlier [45]. This bears a partial resemblance to human 
trial and error methods, and is a useful technique to apply. What is first required here 
is to know whether there is at least one principal resonance structure of  valency zem, 
two, or more. This is soon determined by allowing the program to automatically test 
the structure a number of times for each valency (50 is ample for the modestly sized 
systems mentioned here). The program terminates as soon as a principal resonance 
structure is found, and its valency is reported. If this is greater than two, then the test 
is complete, for the polyhex is untraceable. Otherwise, further tests must be conducted 
along the lines indicated in section 3.4. 

The checks on disconnection were performed here by observation, but could be 
programmed. The fact that branching graphs frequenüy have several terminal verüces 
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means that the number of  pfincipal resonance structures to be checked is not always as 
large as might be feared. 
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